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The Prediction of Response of Solids to Thermal

Loading Using the Finite Element Code AGGIE I

David H. Allen* and Walter E. Haisler**

\E/‘ : ABSTRACT
\

In previous work the authors have proposed a theory for predicting
the response of elastic-plastic solids subjected to thermal loads. The
theory was cast in a finite element framework and has now been placed in
the finite element code AGGIE I. 1In this paper several example problems
will be compared to experimental and other theoretical results. It will
be shown that the model in its current form is adequate for modelling

the response of many solids composed of temperature dependent materials,

INTRODUCTION

In our latest two reports we proposed a constitutive law for

predicting the response of elastic-plastic-cree; materials to thermal
load histories. It will be recalled that the inc Jantal theory of

plasticity was used to obtain a constitutive law of the form

t

9845 = Ciymn

c ,.T
(4, ~dE- ~dE ) + dP,, (1)

where dsij is the stress increment tensor,

Ct is the effective modulus tensor,

i{jmn
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dE__ is the total strain increment tensor,

dE_  is the creep strain increment tensor,
dEmn is the thermal strain increment tensor, and

dP,. is the stress increment tensor caused solely by a change in

i3

material properties due to a temperature change during the load step.

The constitutive law employed the combined isotropic~kinematic hardening
rule in order to model the Bauschinger effect in metals during cyclic
loading. The resulting theory is similar in some respects to theories
proposed by others, most notably Snyder and Bathe,3 and Yamada and
Sakurai.A

In our previous papers the constitutive law was also emplaced in
an incremental variational principle and the finite element method was
then used to discretize the equations of motion into a set of algebraic
equations. The resulting theory was then applied to the finite strain

finite element code AGGIE I.5

This code uses the two dimensional
isoparametric element proposed by Zienkiewicz6 to model both material
and geometricall& nonlinear response.

The purpose of this paper is to verify that the code is now in
operational form. Thié will be accomplished first by reviewing signif-
icant aspects of the code, and second by presenting the results of
several example problems. It will be shown that not only does the code
give quite accurate results in predicting many real world phenomena,
but that this theory is both correct and computationally superior to

that proposed by others. Finally, some significant shortcomings of the

theory will be exposed for further research.
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SIGNIFICANT ASPECTS OF THE CODE

There are several special cases encompassed withing equation (1).
These cases are distinguished by the nature of the response of the
medium as well as required input data and computation time. Accordingly,
we have constructed four separate material models within the code as a
means of affording maximum economy. The first model we have defined is
quasi-isothermal elastic, where quasi-isothermal is defined to mean that
the medium may undergo thermal loading, but that material properties are
not significantly altered due to the temperature change. Under these

conditions equation (1) reduces to

_ C T
dsij - Dijmm (dEmn dEmn dEmn)’ (2
where D is the elastic constitutive tensor. The second model is

ijmn

named nonisothermal elastic and differs from model one in that the

thermal loading is such that material propertie must be considered

to be a function of temperature. In this case eguation (1) reduces to
t+At

c T
dsij Dijmn (dEmn-dEmn—dEmn) + dD

(Et Ct_ETt) (3)

ijmm " mn "mn mn

where D;;ﬁz is the elastic constitutive tensor at the end of the load

step, dDi o is the increment in the elastic constitutive tensor during

b
the load step due to temperature change, and superscripts denote quantities
evaluated at the start of the load step. 1In the third model the material
is allowed to yield, but material properties are assumed to be independent

of temperature. This model is appropriately named quasi-isothermal

elastic-plastic, and equation (1) reduces under these assumptions to




= oL
Dl s R
L

ds

c T
dEm-dEmn-dE m) . (4)

ij " Cijmn (

The final model, called nonisothermal elastic-plastic, incorporates no
simplifying assumptions in the theory and accordingly is given by equation
(1). These four models comprise the temperature dependent modelling
capability of the code AGGIE I.

There are several nuances within the code which should be outlined
before proceeding with example problems. First, one will recall that in
order to solve the thermal stress problem one must characterize the temp-
erature distribution within the medium. In its present configuration the
code AGGIE I does not have this capability., It is assumed that the heat
transfer solution is known a priori. The temperature distribution is
input to the code by specifying nodal temperatures and utilizing the
serendipity functions employed in the isoparametric element to interpolate
within elements. It should also be pointed out that although creep can
be predicted utilizing an uncoupled creep strain term, the emphasis in
this paper will be on plasticity and thermal effects. Thus, most example
problems included herein will have negligible creep.

The required input material data will depend on the model being used.

For example, for the nonisothermal elastic-plastic model it is necessary
to input a set of isothermal stress-strain curves at varying temperatures,
as well as curves giving Poisson's ratio and the coefficient of thermal

expansion as well as functions of temperature.2

EXAMPLE PROBLEMS

The example problems included herein have been chosen primarily

as verification of each of the different models within the code AGGIE I.
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‘he object of these examples is threefold in nature: (1) to rerify t!-
accuracy of the constitutive theory for modelling some nonlinear phenomena,
(2) to support the claim that the comstitutive theory has been correctly
emplaced in the finite element code AGGIE I, and (3) to familiarize
potential code users with the modelling capability of AGGIE I. These
examples are presented here in ascending order of complexity,
I. Pseudo-Isothermal Static Elastic Circular Disk with Radial Temperature
Variation

The first problem is that of a circular disk which undergoes a radial
temperature change as shown in Figure 1. The temperature change is assumed
to be small enough that response is elastic and material properties are
not temperature dependent. The problem is solved in a single step using
the two dimensional isoparametric element mesh shown in Figure 1. Although
this problem may be solved more efficiently with an axisymmetric theory, the
analysis is performed here assuming plane stress (Figure 2) and plane
strain (Figure 3) conditions. Shown in the fig\ -es are comparisons for
the radial displacement v, the radial normal stre orr’ and the circum-

ferential normal or hoop stress o In the figures it is seen that the

06°
results obtained in AGGIE I apree quite well with the theoretical solution
reported by Boley and Weiner.7 This is intended to verify the supposition
that the pseudo-isothermal elastic constitutive law within the code is
correct for plane stress and plane strain analysis.
I1. Pseudo-Isothermal Static Elastic Axisymmetric Shell with Slow Heat
Input
In the second problem the spherical cap shown in Figure 4 is subjected

to an internal pressure of 100 PSI and a slowly applied heat input on the

outer surface such that the temperature on the outer surface is 100°F with
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a linear through thickness variation to 0°F on the inner surface. The

problem has been solved using axisymmetric analysis with the finite
element grid shown in Figure 4. The resulting vertical (w) and horizontal
(v) deflections are plotted in Figure 5 and compared to results obtained

with the shell codes SAMMSOR® and SNASOR.’

It is seen that good agree-
ment is obtained between the analyses, and thus it is assumed that the
code gives accurate results when using axisymmetric analysis in conjunction
with the elastic pseudo-isothermal constitutive law.
I11. Pseudo~Isothermal Dynamic Elastic Cantilever Beam with Rapid Heat
Input
In this example the simply supported elastic beam shown in Figure 6
undergoes free vibration when subjected to a rapidly applied heat input
on the upper surface. The heat transfer problem is assumed to be uncoupled
from the deformation analysis, and thus the temperature distribution has
been obtained from Boley and Weiner.7 Using dynamic analysis and the
finite element mesh shown in Figure 6 the neutral axis deflectiomn at
the center of the beam has been determined and compared to the theoretical
analysis obtained by Boley and Weiner7 in Figure 7. 1In addition, the
results shown herein have been obtained by Snyder and Bathe.3 It is
seen that the dynamic capability of the program is confirmed for this
material law.
IV. Nonisothermal Elastic Axial Bar Subjected to Simultaneous Mechanical
Load and Heat Input
The fourth example demonstrates the capability of the code to predict
the static response of elastic materials with strongly temperature dependent
material properties to simultaneous mechanical and thermal loading. A

significant factor in the accuracy of the theory is the correct deter-




W(IN)

.020-

0I5+

0101

Sammsor and Snasor

005
0 T Y ™ T e - - 1:—9
o° 22.5° 45° 67.5° 90°
V(iN) Sammsor_and Snasor
0201
L0154
AGGIE I
0104
005"
0% 2% 4 et sor °
Figure 5. Computer Code Comparison for Analysis of Example Two




Q »
C T T 1T 1T 1T T 11 T
_ NEUTRAL AXIS |
[ INSULATED D
~ los
d 10" *-‘
0 | (Bre/ifsec) E=26x10%si
Vv=0.3
2 a=6x10 "in/in/°F
@ =6.47x10* ibgsec?/in*
THERMAL CONDUCTIVITY

-7

=6.065x10"*Btu/sec- in-°F

THERMAL DIFFUSIVITY
=.02inYsec

SIMPLY SUPPORTED BEAM AND HEAT INPUT

FINITE ELEMENT MESH, FORTY 8 NODE ELEMENTS

Figure 6. Input and Material Properties for Example Three

12

o i o oy o St



NEUTRAL AXIS VERTICAL DEFLECTION AT CENTER OF BEAM (in)

0271 AGGIE I
e Boley and Weiner
STATIC /SOLUTION
O+
g
5
o (]
(-]
L
3
£
Q
0 —f— = — — ¢
0 0l .02 03 04 .08

Figure 7. Comparison of Results for Example Three

~ t{sec)




T T

mination of the thermal strain increment during a nonisothermal load
step. To support this statement a theoretical discussion will be
included in this example and this theory will be verified by experi- i
mental verification.
First, consider the elastic stress increment equation, which has

been previously determined1 to be represented by equation (3)

R = Y e, | t Tt (5)
dsij Dijmn (dnmn dEmn) + dDijmn (Emn Emn )y

. e s T .
In order to determine the correct definition of dEmn in this equation,

consider a uniaxial case with no creep. Equation (3) thus reduces to

t+
E At T C'I't

do = (de=deT) + dE (-¢'Y), (6)

where o is the uniaxial stress, ¢ is the uniaxial strain, and E is the
elastic modulus.

Next, the strength of materials solution is examined for two
separate bars constructed from the same material, with properties as
shown in Figure 8. Both bars are initially set at a reference state
of zero load and zero temperature. The loading histories for bars one
and two are shown in Figure 9. The axial strain in bar number one can

be found from strength of materials theory to be

ri = T + % = 10 107 x 100 + 120-(7)9 = .002. %)

1 10

Similarly, the axial strain in bar number two is determined to be

2 = aAT + 2= 20 x 1070 x 200 + 19900 __ _ o06. (8)
E 6
2 5 x 10

14
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Next, bar number one is subjected to the udditional loading history
shown in Figure 10. Since for elastic action the loading history must
be path independent, it is seen that the axial strain in bar number one
must now be identical to that in bar number two. Thus, the strain
increment predicted in bar number one for the time increment from tl

to t, must be the difference in the total strains determined in equations

2

(7) and (8), or .004 in/in. Hence, in order to be correct, equation

(7) must predict this result.

Suppose one assumes that the thermal strain increment is given by

T t+At 6
a

de = (T, -T, ) = 20 x 10°° x 100 = .002. 9)

2 1
Then, noting that the stress increment is zero, equation (6) gives

0 = 5000000 (de-.002) + (-5000000) (.002-.001)-

_ 5000000 _ _
de = .002 + gooooss (.002-.001) = .003. (10)

The above prediction is obviously in error. Thi error can be traced
to the thermal strain increment determined in equ: "o>n (9). Suppose

on recalculates the thermal strain increment assuming

T t+At
a

t
de” = (Tt -TR) -a (Tt =T,)

2 1 R

20 x 10-6 (200-0) - 10 x 10_6 (100-0) = .003. (11)
For the above predicted thermal strain increment equation (6) gives

0 = 5000000 (de~.003) + (-5000000) (.0C2-.001)~>

5°°°°°g (.002-.001) = .004, (12)

de = .003 +m—

which is the correct increment. To better see how the error is incurred
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by using the former definition, consider the latter definitic., given

by equation (11)

T t+At
= q

de

t
('l‘t -TR) - a (Tt -T.)

2 1 R

t+At
a

(r, -1, ) + @ ohy (1, 1. (13)
2 1 1

The first term in equation (13) is the thermal strain increment
predicted by equation (9), and the second term therefore represents
the error incurred by using equation (9). Mathematically,. equation
(13) may be interpreted as representing a chain rule differentiation.
Physically, the last term can be better understood by considering an
example. Consider a uniaxial bar subjected to an initial thermal and
mechanical load. Now suppose that some process can be performed on the
bar such that the coefficient of thermal expression can be altered
without changing the temperature. Thén the bar will undergo an
additional expansion given by the second term i. equation (13). It
can be seen that the error incurred by neglecting his term will
depend on how strongly alpha depends on temperature. It should not
be assumed that because this term is small for a particular load step
that it may be neglected. Rather, the entire load history should be
considered. If there is a significant variation in the coefficient of
thermal expansion for the range of temperatures expected, this term
should not be neglected.

To illustrate the error which may be incurred by utilizing equation
(10) to define the thermal strain increment, the code is now compared
to experimental data. An aluminum (6061-T6) axial bar with material

properties as shown in Figure 11 is subjected to the load history shown
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in Figure 12. Due to the relatively short timn. period, creep strain

is assumed to be negligible. Analytical axial strain calculations are

compared to experiment in Figure 12. Experimental results as well as

the theoretical result denoted CREEPARHS are due to Stone.10 Three
solutions were performed in AGGIE I using a single plane stress isopara-
metric element and twenty-six load steps. In the first analysis it is
assumed that material properties are not temperature dependent and

room temperature data are used. In the second solution, properties

are assumed to vary with temperature, and the definition of the thermal

strain increment given by equation (9) is used. Finally,6 the third

analysis employs temperature dependent material properties as well as
the definition of the thermal strain increment given in equation (11).
It is found that all theoretical results except the last are in error
by approximately ten percent or more. Thus, the importance of tempera-
ture dependent material properties as well as a correct definition
of the thermal strain increment are illustrated "'y this example problem.
V. Quasi-Isothermal Elastic-Plastic Annular Disk "ubjected to Radial
Temperature Variation
In this example problem the annular disk shown in Figure 13 is
subjected to a heat input producing a static temperature distribution

given by
T=T - (Tb - Ta) log (r/a) /log (b/a), (14)

where Tb is the temperature at the outer surface and Ta is the
temperature at the inner surface. It is found that under this
loading condition the material yields, thus requiring an elastic-

plastic constitutive theory. For this anlysis the uniaxial stress-
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strain data and finite element mesh shown in Figure 13 were used. A
theoretical solution to this problem has been obtained by Dastidar and
Ghosh,11 and duplicated by Levy.12 We have solved this problem using

both the quasi-isothermal elastic-plastic and the nonisothermal elastic-
plastic models in AGGIE I. 1In the second model it was assumed that the
material exhibited identical uniaxial stress-strain behavior at various
temperatures, thus reproducing the results obtained in the quasi-isothermal.
The purpose of this example problem is twofold. First, it is shown in
Figure 14 that the quasi-isothermal elastic-plastic theory within AGGIE

I produces results for radial stress (Or) and hoop stress (oe) which are

1,12 Second, it is noted here

identical to those obtained by others.1
that utilizing the quasi-thermal constitutive model in AGGIE 1 gave a
computational time saving of approximately 4.5% when compared to the
nonisothermal theory. Therefore, it is concluded that the use of
simplified theories when material properties of the medium are essen-
tially temperature independent can be efficient nd should be included
as separate models within the computer codes.
VI. Nonisothermal Elastic-~Plastic Axial Bar

This test case demonstrates the capability of the code to predict
the response of media near their ultimate strength. As a part of this
ability it is necessary to properly predict the structural response in
the transition range from elastic to elastic-plastic behavior. A method
for predicting isothermal behavior in the transition range has been
previously proposed by Krieg and Duffey.13 Although their approach

may not be used during nonisothermal transitions, it can be modified

to obtain correct results. This method will be presented here along
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with a verifying example.
First recall that an assumed stress increment tensor (dsij) is
obtained using the predicted strain increment tensor dEij and assuming

elastic behavior, i.e.,

. +
ds., = o+t (ag  —daE® -gE! )
1] 1 J mn mn mn mn
~ (15)
+dD. . t _gCt_pTYy
ijmm " mn mn ‘mn

where the quantities above are as previously defined. This supposed
stress increment tensor is then added to the stress state at the start
of the step and the sum is used to check for plastic flow via the yield

condition, ’

If no yielding occurs the predicted stress increment is
correct. However, if the yield condition is satisfied, one must first
determine that portion of the stress and strain to the initial yield
surface.

To obtain the stress increment tensor necessary to cause yield,

recall that the yield function is utilized, i.e.,

L At L L]

" 2
(sij+r,ds -a,, ) (S,., +zdS8,, - a, )—5

ij ij ij i] ij y s (16)

. ; . t+At
where aij is the yield surface translation tensor, Oy denotes that

the yield surface size is temperature dependent, primes indicate

N |
deviatoric components, and stij is the stress increment tensor necessary

to cause yielding. 1In this respect the method proposed by Krieg and

Duffey is correct. Recall that one determines 7 by using

_ -B + VB2 - 4nc
L= 7A ’

(17)




where

AR Al
A= dsij dsij R
[} L] -t
B=2(S,, - . ds. ., d
( ij aiJ ) ij an (18)
2
B ' ' ' ' 2 t+At
C= (855 - a5) Ggy-ayy) -3 9 ’

In order to find the strain increment tensor necessary to cause
yielding, the isothermal theory must be modified. To do this, first
note that since the material behaves elastically up to yield, the

following relation must be satisfied:

t
i]

- _ o btHAL et e
(s,;. + r_.dsij ) = Dijmn (Emn + udEmn ) (19)

where u is a scalar which when multiplied by the predicted elastic strain

increment dE:n, will cause yielding, and the superscript e denotes elastic

strain components. Solving equation (19) for u and setting the free

indeces i and j equal to unity yields.

t - t+At _et
"y o= S11 + Cdsll - Dllmn mn
B t+At ‘e (20)
Diik1 9B
Since st ot ot (213
11 1lmn mn °

equations (20) and (21) may be combined to obtain

. et
tdSy) = 94Dy on Emn
ne= pEHAt jce (22)
11k1 %

Thus, after obtaining ¢ from equation (17) one can find u in equation

(22) and the resulting strain increment tensor necessary to cause yielding

from

(23)
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The method in equation (23) may be better understood by considering a

uniaxial case, as shown in Figure 15. For a one dimensional stress

state equation (20) reduces to

ot 4 rae - EEYE ot

u = =
gttit jce (24)

where o is the uniaxial stress, ¢ is the uniaxial strain, and E is the
elastic modulus. For convenience the thermal and creep strains are
removed from the graph in Figure 15 so that on the ordinate it is found
that

t t+At et t+At e .
o =E € + uE de  + tdo . (25)

Solving the above equation for py gives equation (24) so that the theory
is verified for the uniaxial case.

In order to complete the constitutive law for the transition step
from elastic to plastic action it is next necessary to determine the
portion of the strain increment occurring after vield. This amount
is given by

dEP = (1-) dﬁi (26)

ij i’

Now again considering Figure 15, it is seen that since the state of

stress and strain have been advanced to the stress-strain curve for

the temperature at the end of the step, one need only calculate the

ep
i

may be dropped from equation

isothermal portion of the stress increment caused by dE In other

words, in the transition step the term dPij
(1). Due to the determination of the stress increment necessary to cause

yielding this final step will yield correct results.

It is interesting to note that equation (1) may be used without




modification if a different formulation for ¢ is used. 1In fact, déij
may be used as the stress increment necessary to cause yielding if
equation (1) is used to predict the stress increment after yield.
This method has not been used here for two reasons. First, it is
obviously computationally efficient to circumvent the calculation of
dPij due to its complexity. Second, and more importantly, the
uniaxial thermal stress rate (do/dt) necessary to calculate dPij cannot
be determined below the yield point because the computer code AGGIE I
does not save this information. For other reasons which are apparent
from examination of references 1 and 2, the code carries only data
relating uniaxial stress to plastic strain.

The above method may now be applied to an example experimental
problem. In this example an axial bar with isothermal material properties
shown in Figure 16 is subjected to the load history shown in the same
figure. Attempts at verification of this problem have failed due to .
the fact that the relatively long heat-up time required with the equip-
ment at this institution induces significant creep. Additional equip-
ment is on order and it is hoped that experimental verification will be
forthcoming in the near future. This example is included not as a
verification of the theory, but rather as a corroboration of the computa-
tional efficiency of the model.

One will recall that in our previous papers we proposed that

to obtain the effective modulus tensor Ci for a load step one should

jmn
use the elastic constitutive tensor Diimn at the end of the load step.
This was shown to be mathematically correct and is computationally

supported by this example. In the example, an axial bar is loaded
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isothermally to some plastic state and is then simultaneously subjected
to a mechanical load and spacially constant slow heat input. According
to the classical incremental theory of plasticity it is required that
the state of stress and strain move to a point on the uniaxial stress-
strain diagram for the temperature at the end of the step. This require~
ment must be satisfied in order to remain consistent with the yield
surface during plastic loading. Using the elastic modulus proposed by
us the theory will predict this result exactly. 1If one utilizes the
elastic modulus at the start of the load step the state of stress and
strain will converge incorrectly to a point denoted by the head of the
dashed line in Figure 16. This point corresponds to a horizontal trans-
lation from (ext, oxt) to the stress-strain curve at the temperature at
the end of the step, followed by a translation parallel to the stress-
strain curve at time t. Thus, utilizing the elastic modulus at the start
of a load step does not satisfy the consistency condition. Further, if
one employs equilibrium iteration and correctly updates the elastic
modulus during the iteration procedure, the solution will converge to
the correct solution, but in exactly twice the computation time encountered
in our theory. Therefore, it is suggested that using the elastic
constitutive tensor at the end of the step is not only consistent but
also computationally efficient.
VII. Nonisothermal Elastic-Plastic Axial Bar with Significant Creep

This test case demonstrates the capability of the code to predict
the response of media near their ultimate strength. As was pointed out
in references 1 and 2, a part of this ability rests upon properly pre-

dicting the structural response in the transition range from elastic to




o

elastic-plastic behavior, To demonstrate this capatilitv, an aluminum
(6061-T6) uniaxial bar with isothermal material properties shown in
Figure 11 is subjected to the load hi~tory shown in Figure 17, such that
ultimate failure of the specimen occurs. Experimental and CREEPARHS
results for axial strain are due to Stone.lo Two analyses were performed
using AGGIE I. 1In the first, creep is assumed to be negligible. In
the second, linear interpolation of isothermal creep data at a load of
20 KSI is used. It is seen from results plotted in Figure 17 that the
theory produces accurate results even near the ultimate strength of the
material.
VIIT. Nonisothermal Elastic-Plastic Thick Walled Cylinder

In this problem an axisymmetric cylinder with material properties
and geometry shown in Figure 18 is subjected to the thermomechanical
load history shown in the same figure. Residual radial stresses and
displacements at time t = 10 are shown in Figure 19, indicating that
results obtained in AGGIE I are comparable to t!1 se obtained in ADINA.3
This example was chosen because the author has bec¢ nsuccessful in
obtaining documented experimental results of bodies subjected to thermo-
mechanical loadings producing spacially variable multiaxial stress states.
It is to be noted that the model in ADINA does nut account for combined
hardening during cyclic loading, and thus represents a special case of
the model proposed herein.
IX. History Dependent Uniaxial Thermomechanical Loadings

Although no experimental results are available for this example,
it serves to illustrate the capability of the theory to model history

dependent phenomena. In the analysis, four identical uniaxial bars

with isothermal material data as shown in Figure 20 and initially at
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zero load and temperature are subjected to the thermomechanical loadings

shown in Figures 21 and 22. It is noted that the peak thermomechanical
load in each case is identical. Results of the theory are shown in
Figure 23, wherein it is seen that the model does in fact predict signifi-
cantly different residual strains.
X. Nonisothermal Elastic-Plastic Axial Bar Subjected to Cyclic Load

Histories

One of the primary purposes of this research has been to obtain
a theory which can effectively model the response of elastic-plastic
media to cyclic mechanical and thermal loading. Although the literature
contains abundant verification tools for isothermal cyclic loading histories,
the author has been unable to obtain experimental data to verify the
nonisothermal problem. Therefore, certain experiments have been undertaken
to perform certain nonisothermal tests using axial bars on the MTS
system. Although results of these experiments are incomplete at this
time, analytical results of a cyclic test are presented herein. Although
the theory is capable of modelling creep response, this study is meant
to verify the time independent behavior of the material. Therefore,
the uniaxial test case shown in Figure 24 has been chosen. Note that
the specimen is heated at zero load after prestrain so that no creep
occurs, This problem thus tests the expansion and translation of the
vield surface in stress space caused by a temperature change. In order
to verify the applicability of the theory it is necessary to perform
three material data tests. Isothermal stress-strain curves are generated
at room temperature and ZOOOF. In addition, an isothermal cyclic load
test is performed to determine the ratio of isotropic to kinematic

hardening (f) used in the model. Theoretical results are presented in
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Figure 25 where it should be noted that the times t, correspond to

i
those shown in the load history curve in Figure 24. It is seen that the
combined hardening model (tz) with B8 = .5 produces results which differ
significantly from both kinematic (tz) and isotropic (tZ) nonisothermal
hardening theory as well as isothermal isotropic hardening theory at

time t indicated by the dashed line in Figure 25.

4
In order to better understand the genesis of the yield surface for
the various workhardening rules, the yield surface is diagrammed for the
various workhardening rules in Figures 26 through 28, Note again that
the times ty in these figures correspond to those shown in Figure 24.

The arrows shown along the a, axis in each diagram represent the path of

1
the stress state during the uniaxial loading. Careful inspection of
these diagrams will show that although all temperature dependent yield
surface modification is isotropic (producing concentric yield surfaces),

the choice of hardening rule will significantly affect the point of

reyield in compression.

CONCLUSION

The theory previously proposed by us has been shown in this report
to be adequate in predicting response of many solid media. In additionm,
it has'been shown that certain computationally simplified forms of the
theory are correctly in place in the computer code AGGIE I. It has also
been shown that the theory may be inadequate in modelling certain physical
phenomena. Among these are rate dependence, instability near ultimate
strength, finite stress and strain, phase changes, and violation of
other assumptions in the theory such as the normality condition. Research

is currently underway to incorporate the above additions to the theory.
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Figure 25. Results for Example Ten
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